Central Weyl involutions on Fano–Mukai fourfolds of genus 10

نویسندگان

چکیده

It is known that every Fano–Mukai fourfold X of genus 10 acted upon by an involution $$\tau $$ which comes from the center Weyl group simple algebraic type $$\textrm{G}_2$$ , see Prokhorov and Zaidenberg (Eur J Math 4(3):1197–1263 2018, Eur 8:561–572, 2022). This uniquely defined up to conjugation in $${\text {{Aut}}}(X)$$ . In this note we describe set fixed points surface scroll swept out -invariant lines.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involutions in Weyl Groups

Let G be a split real group with Weyl group W . Let E be an irreducible representation of W . Let V be the stable Lie algebra version of the coherent continuation representation of W . The main result of this paper is a formula for the multiplicity of E in V . The formula involves the position of E in Lusztig’s set ∐ M(G). The paper treats all quasi-split groups G as well.

متن کامل

Algorithms for Twisted Involutions in Weyl Groups

Let (W,Σ) be a finite Coxeter system, and θ an involution such that θ(∆) = ∆, where ∆ is a basis for the root system Φ associated with W , and Iθ = {w ∈ W | θ(w) = w−1} the set of θ-twisted involutions in W . The elements of Iθ can be characterized by sequences in Σ which induce an ordering called the Bruhat poset. The main algorithm of this paper computes this poset. Algorithms for finding con...

متن کامل

Hecke algebras and involutions in Weyl groups

(Py,w;i ∈ N, u is an indeterminate) were defined and computed in terms of an algorithm for any y ≤ w in W . These polynomials are of interest for the representation theory of complex reductive groups, see [6]. Let I = {w ∈ W ;w2 = 1} be the set of involutions in W . In this paper we introduce some new polynomials P σ y,w = ∑ i≥0 P σ y,w;iu i (P σ y,w;i ∈ Z) for any pair y ≤ w of elements of I. ...

متن کامل

The Weyl Group as Xed Point Set of Smooth Involutions

We show that the Weyl group W = M 0 =M of a noncompact semisimple Lie group is obtained by taking xed point sets of smooth involutions in K=M. More precisely, one considers rst the xed point set X of the involutions deened on K=M by the elements of order 2 in exp ia. The Weyl group is either X , or the xed point set of the involutions deened on X by special elements of order 4 in exp ia.

متن کامل

Computing the arithmetic genus of Hilbert modular fourfolds

The Hilbert modular fourfold determined by the totally real quartic number field k is a desingularization of a natural compactification of the quotient space Γk\H, where Γk = PSL2(Ok) acts on H4 by fractional linear transformations via the four embeddings of k into R. The arithmetic genus, equal to one plus the dimension of the space of Hilbert modular cusp forms of weight (2, 2, 2, 2), is a bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rendiconti Del Circolo Matematico Di Palermo

سال: 2023

ISSN: ['1973-4409', '0009-725X']

DOI: https://doi.org/10.1007/s12215-023-00936-x